\checkmark Created analysis model \checkmark Validated analysis model
\checkmark Verified analysis model
\checkmark Sensitivity analysis

What about the chosen section sizes????
= 'technical assessment'

The modelling process

Technical assessment

- Sizes and details of members are established
- Ensure the design is fit for purpose

How?

- Assess the structure against code of practice rules.

Technical assessment

- Strength - the structure must be strong enough to resist the worst loading conditions without collapse
= "Ultimate Limit State (ULS)"
- Stiffness - the structure must be stiff enough to resist normal working conditions without excessive deflection of deformation.
= "Serviceability Limit State (SLS)"

Limit state design

- The 2 main limit states:

Yielding, buckling, stability against overturning and sway, fatigue, fracture

- Strength ULS - 'Resistance' in Eurocodes

Based on 'Ultimate' loads (including partial factors of safety)

- Serviceability SLS $\begin{aligned} & \text { Deflection, vibration, durability, } \\ & \text { cracking, corrosion. } \\ & \text { Based on behaviour at working } \\ & \text { 'Service' load (unfactored) }\end{aligned}$

Factors of Safety

For Limit State Design Partial Factors of Safety are applied.
Partial Safety Factors (psf) - applied, separately \& independently, to all un-related loads \& materials.
-Basic applied loads - multiplied by psf to get design loads.
-Basic material strengths - divided by other psf to get design strengths.

Strength Check:
-effects of factored-up loads (bending; compression; shear) < ability of factored-down materials to cope with them!

Requirement for a safe design

'Normal distribution'

Code requirements control the size of the area defined by the intersection of the curves.

Eurocodes

- Eurocode 0, BS EN 1990 - Basis of Structural Design
- Eurocode 1, BS EN 1991 - Actions on Structures
- Eurocode 2, BS EN 1992 - Design of Concrete Structures
- Eurocode 3, BS EN 1993 - Design of Steel Structures
- Eurocode 4, BS EN 1994 - Design of Composite Steel and Concrete Structures
- Eurocode 5, BS EN 1995 - Design of Timber Structures

Use of Eurocodes

- The following guidelines have been simplified.
- They should not be used as a substitution for design with the Eurocode in future.

Steel Structures

Material

- Mild steel 'S275' (for thickness $\mathrm{t}<40 \mathrm{~mm}$)
- yield strength $f_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
- ultimate tensile strength $f_{u}=430 \mathrm{~N} / \mathrm{mm}^{2}$
- $\gamma_{\mathrm{Mo}}=$ Partial safety factor for resistance of cross-section $=1.0$

Steel Structures

Tension

Steelstructures

Compression

Neglect buckling effect

Steel Structures

Bending

Neglect lateral torsional buckling

Steel Structures

Combined Bending and Axial

Use a simplified utilisation ratio:

$$
\left[\frac{N_{E d}}{N_{c, R d}}\right]+\left[\frac{M_{y, E d}}{M_{c, R d, y}}\right]+\left[\frac{M_{z, E d}}{M_{c, R d, z}}\right] \leq 1.0
$$

Assumes NO buckling present.

Timber Structures

Material

Timber design typically assesses stresses (not forces).

Stresses due to applied factored design load < Factored and Modified material design strengths.

Modify tabulated characteristic material strengths Modify predominantly due to:

- effect of the duration of the loads
- in-service condition related to moisture content

BS EN 338 - Structural timber; strength classes

Table 1 - Strength classes - Characteristic values

		Softwood specles												Hardwood specles							
		C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50	D18	D24	D30	D35	D40	D50	D60	D70
Strength properties (in $\mathrm{N} / \mathrm{mm}^{2}$)																					
Bending	$f_{m, k}$	14	16	18	20	22	24	27	30	35	40	45	50	18	24	30	35	40	50	60	70
Tension parallel	f fok	8	10	11	12	13	14	16	18	21	24	27	30	11	14	18	21	24	30	36	42
Tension perpendicular	f fook	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Compression parallel	faok	16	17	18	19	20	21	22	23	25	26	27	29	18	21	23	25	26	29	32	34
Compression perpendicular	f crok	2,0	2,2	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,1	3,2	7.5	7,8	8,0	8,1	8,3	9,3	10,5	13,5
Shear	$f_{v, k}$	3,0	3,2	3,4	3,6	3,8	4,0	4,0	4,0	4,0	4,0	4,0	4,0	3,4	4,0	4,0	4,0	4,0	4,0	4,5	5,0
Stiffness properties (in $\mathrm{kN} / \mathrm{mm}^{2}$)																					
Mean modulus of elasticity parallel	$\mathrm{E}_{\text {0rem }}$	7	8	9	9.5	10	11	11,5	12	13	14	15	16	9,5	10	11	12	13	14	17	20
5% modulus of elasticity parallel	$\mathrm{E}_{\text {ase }}$	4,7	5,4	6,0	6,4	6,7	7.4	7,7	8,0	8,7	9,4	10,0	10,7	8	8,5	9,2	10,1	10,9	11,8	14,3	16,8
Mean modulus of elasticity perpendicular	$\mathrm{E}_{\text {spman }}$	0,23	0,27	0,30	0,32	0,33	0,37	0,38	0,40	0,43	0,47	0,50	0,53	0,63	0,67	0,73	0,80	0,86	0,93	1,13	1,33
Mean shear modulus	$\mathrm{G}_{\text {mex }}$	0,44	0,5	0,56	0,59	0,63	0,69	0,72	0,75	0,81	0,88	0,94	1,00	0,59	0,62	0,69	0,75	0,81	0,88	1,06	1,25
Density (in kg/m ${ }^{3}$)																					
Density	p_{k}	290	310	320	330	340	350	370	380	400	420	440	460	475	485	530	540	550	620	700	900
Mean density	Prame	350	370	380	390	410	420	450	460	480	500	520	550	570	580	640	650	660	750	840	1080

NOTE 1 Values given above for tension strength, compression strength, shear strength, 5% modulus of elasticity, mean modulus of elasticity perpendicular to grain and mean shear modulus, have been calculated using the equations given in Annex A.
NOTE 2 The tabulated properties are compatible with timber at a moisture content consistent with a temperature of $20^{\circ} \mathrm{C}$ and a relative humidity of 65%.
NOTE 3 Timber conforming to classes C45 and C50 may not be readily available.
NOTE 4 Characteristic values for shear strength are given for timber without fissures, according to EN 408 . The effect of fissures should be covered in
design codes.

Timber Structures

Design strength $=$ characteristic strength $\mathrm{x}\left(k_{\text {mod }} / \gamma_{M}\right)$

- $K_{\text {mod }}$ - EC5 Table 3.1, modification factor to take account of duration of the service class and the load duration class.

Service class 1: Temperature of $20^{\circ} \mathrm{C}$ and relative humidity only exceeding 65% for a few weeks per year.
Service class 2 - as class 1 but with the relative humidity only exceeding 85% for a few weeks per year
Service class 3 - for all moisture contents greater than service class 2

Permanent action (eg self-weight)
Long-term action (eg storage)
Medium-term action (eg floor LL \& roof snow?)
Short-term action (eg roof snow?)
Instantaneous action (eg wind)

$$
\begin{aligned}
& k_{\text {mod }}=0.6 \\
& k_{\text {mod }}=0.7 \\
& k_{\text {mod }}=0.8 \\
& k_{\text {mod }}=0.9 \\
& k_{\text {mod }}=1.1
\end{aligned}
$$

- Material safety factor for solid timber, Table 2.3, $\gamma_{M}=1.3$

Timber Structures

Tension

Timber Structures

Compression

Use $\sigma=\mathrm{Fx} / \mathrm{A}$
Assume partial factors for load
have been applied

$$
\sigma_{c, 0, d} \leq f_{c, 0, d}
$$

Neglect buckling

Timber Structures

Bending

Concrete Structures

Material

Concrete:
$\mathrm{f}_{\mathrm{cd}}=\alpha_{\mathrm{cc}} \mathrm{f}_{\mathrm{ck}} / \gamma_{\mathrm{c}}$
Use 'standard' C25/30 concrete, $\mathrm{f}_{\mathrm{ck}}=25 \mathrm{~N} / \mathrm{mm} 2$
($f_{c k}$ - the characteristic cylinder strength of the concrete)
$\gamma_{c}=1.5$ and $\alpha_{c c}=0.85$
Reinforcement:
Failure stress $\mathrm{f}_{\mathrm{yd}}=\mathrm{f}_{\mathrm{yk}} / \gamma_{\mathrm{s}}$.
Use 'standard' UK reinforcement, $\mathrm{f}_{\mathrm{yk}}=500 \mathrm{~N} / \mathrm{mm} 2$
(f_{yk} - the characteristic yield strength of the reinforcement)
$\gamma_{\mathrm{s}}=1.15$

Concrete Structures

Definitions

d - the effective depth of the section = distance from the top of the section to the centre of area of the reinforcement
h - total depth of the section
b - breadth of section
A_{s} - area of tensile reinforcement
x - the distance from the top of the beam to the neutral axis
z - the lever arm for the moment
s - the depth of the stress block $=0.85 x$

Concrete Structures

Bending

Concrete Structures

$F_{c c}=$ strength x area $=\left(0.567 f_{c k}\right)(0.8 x)(b)$
$z=d-1 / 2(0.8 x)$
$M_{R}=F_{c c} \cdot z=1.134 f_{c k} b d^{2}\left(z / d-(z / d)^{2}\right)$ - a quadratic.
Let coefficient $K=1.134\left(z / d-(z / d)^{2}\right)$, and let $\boldsymbol{M}_{R}=\boldsymbol{M}_{E d}$ so, $M_{E d}=K b d^{2} f_{c k}$
$K=M_{E d} /\left(b d^{2} f_{c k}\right)$
Solving K quadratic gives
$z=[0.5+\mathrm{V}(0.25-K / 1.134)] d$
$F_{\text {st }}=$ strength \times area $=\left(0.87 f_{\text {yk }}\right) A_{s}$
$M_{R}=F_{s t} \cdot z=\left(0.87 f_{y k}\right) A_{s} \cdot z$
Again, let $M_{R}=M_{E d}$:
$A_{s}=M_{E d} /\left(0.87 f_{y k} z\right)$

Concrete Structures

Shear

Serviceability

For steel and timber, beam deflection checks can be carried out in serviceability assessment.

Calculated deflection values can be compared with results from the analysis model - do they correlate?

NB. Deflection rarely controls with normal loading situations on beams but it can be an issue on long-span, lightly-loaded beams (eg roofs).

Deflection criteria for concrete are typically controlled by limiting span-to-depth ratios.

Beam deflection formula

Moment \& deflection formulae for standard beams

Maximum moment	Maximum deflection

$\frac{W L}{4} @ B$	$\frac{W L^{3}}{48 \mathrm{EI}} @ \mathrm{~B}$
$\frac{\mathrm{Wab}}{\mathrm{L}} @ \mathrm{~W}$	$\frac{\mathrm{WL}^{3}}{48 \mathrm{EI}}\left\{\frac{3 \mathrm{a}}{\mathrm{L}}-4\left(\frac{\mathrm{a}}{\mathrm{L}}\right)^{3}\right\} @ \mathrm{~B}$ (within $2 \frac{1}{2} \%$ of max.)
$\frac{\mathrm{wL}^{2}}{8} @ \mathrm{~B}$	$\frac{5 \mathrm{wL}^{4}}{384 \mathrm{EI}} @ \mathrm{~B}$
$\mathrm{M} @ \mathrm{~A}$	$\frac{\mathrm{ML}^{2}}{16 \mathrm{EI}} @ \mathrm{~B}$ (within 4% of max.)
M	$\frac{\mathrm{ML}^{2}}{8 \mathrm{EI}} @ \mathrm{~B}$

Beam deflection formula

$\mathrm{WL} @ \mathrm{~A}$	$\frac{\mathrm{WL}^{3}}{3 \mathrm{EI}} @ \mathrm{C}$
$\frac{\mathrm{wL}^{2}}{2} @ \mathrm{~A}$	$\frac{\mathrm{wL}^{4}}{8 \mathrm{EI}} @ \mathrm{C}$
M	$\frac{\mathrm{ML}^{2}}{2 \mathrm{EI}} @ \mathrm{C}$

$\frac{3 \mathrm{WL}}{16} @ \mathrm{~A}$	$\frac{3 \mathrm{WL}^{3}}{322 \mathrm{EI}} @ \mathrm{~B}^{\prime}$
$\frac{5 \mathrm{WL}}{32} @ \mathrm{~B}$	
$\frac{\mathrm{wL}^{2}}{8} @ \mathrm{~A}$	$\frac{\mathrm{wL}^{4}}{185 \mathrm{EI}} @ \mathrm{~B}^{\prime \prime}$
$\frac{9 \mathrm{wL}^{2}}{128} @ \mathrm{~B}^{\prime}$	

$\frac{\text { WL }}{8}$ @ A, B, C	$\frac{\mathrm{WL}^{3}}{192 \mathrm{EI}} @ \mathrm{~B}$
$\begin{aligned} & \frac{\mathrm{wL}^{2}}{12} @ \mathrm{~A}, \mathrm{C} \\ & \frac{\mathrm{wL}^{2}}{24} @ \mathrm{~B} \end{aligned}$	$\frac{\mathrm{wL}^{4}}{384 \mathrm{EI}} @ \mathrm{~B}$

