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Deflection formulae for beams and properties for 
equivalent beam models  for parallel chord trusses 
and vierendeel frames 

 

1.  General formula 
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Deflection due to 
shear deformation 

Deflection due to 
bending 
deformation 

Cb and Cs from 
Table 3 

W -  total load 

L - span 

EI - bending stiffness 

parameter 
Ks - shear stiffness 

Expressions for Ks  
see Table 1 

Expressions for I  
see Table 1 

Beam 
deflection 

 

2.  Beam 
 

Table 1 Expressions for I and Ks 
Structure I Ks 

Beam   I AsG - Table 2 

Parallel chord truss Ig Kst  - Eq (A) 

Vierendeel frame Ig Ksv -  Eq(B) 

 

Table 2  Values for shear area As 

Section  As  
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I section bent about major axis Area of web 

I section bent about minor axis 5/6 Area of flanges 

 

 
3.  Parallel chord truss 
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Parameters for parallel chord truss 

Ap, Ep 

f   = 1.0 for singly braced truss 

    =  2.0 with compressive  cross bracing  

    =  0.5 for K bracing 

2
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With tensile only cross bracing treat as 

singly braced 

With compressive cross bracing ignore 

flexibility of posts 
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4.  Vierendeel frame 
 

]21[

24

2 


a

EI
K c

sv      (B) 

 

bI

aI

p

c

/

/
  

 

 

Table 3 Beam deflection coefficients 

Structure Load Cb   bending Cs   shear 

Cantilever 

 E,I 

L  

Point tip 
 

1/3 1.0 

UD 1/8 1/2 

Simply supported 

 E,I 

L  

Point central 
 

1/48 1/4 

UD 5/384 1/8 

 

5.  Derivation of Kst 

   

From the Bar Element Document,  Equation (21) is: 
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Governing differential equation for shear deformation: 

  S  =  Ks  dv/dx 

i.e.  
dxdv

S
Ks

/
  

v is the displacement in the y direction 

From the diagram:   dv/dx  =  /a  

Substituting this and S = W  into (21): 
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Note that sin
2
 is used because the  for the frame is 

(90 - ) for Equation (21) 

Using a/Ld = cos     and  a/b = cot : 
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Parameters for vierendeel frame 
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6.  Derivation of Ksv 

Figure 1(a)  shows a vierendeel frame with points of contraflexure at mid-length of all 

members.  Such positions for the points of contraflexure is the fundamental assumption 

in developing the shear mode deformation of a vierendeel frame as an equivalent beam. 
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 
(a)  Frame showing panel width section 

(b)  Panel width sub-frame 

Figure 1  Vierendeel frame 

 

(c)  Symmetrical half of sub-frame  

 
 

Also shown on Figure 1(a) is a section of the frame bounded by points of contraflexure.  

This is extracted to Figure 1(b) where the shear at the points of contraflexure S/2.  S is 

the total shear at the section and half is taken by each chord (assuming them to have the 

same I value).  The final trick is to work on  a symmetrical half of this sub-frame as in 

Figure 1(c).  The deflection under the S/2 load of the frame of Figure 1(c)  is calculated 

(using the principle of virtual work) to be: 
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     hence dv/dx =  /a  and  Ksv =  S/(dv/dx) 

hence  
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Note  G =  E/(2(1+))   where  is Poisson’s Ratio 

 

7.   Constitutive relationships for bending and shear: 

Bending     

      M  =  EI d
2
v/dx

2
      i.e d

2
v/dx

2
  =  M/EI 

Shear     

      S =  Ks  i.e.  dv/dx  =  S/ Ks 

where Ks is the shear stiffness.   

For a beam Ks =  AsG where   As is the shear area and G is the shear modulus. 

Table 3 shows shapes of shear force and bending moment diagrams and corresponding 

displacement diagrams. 

For bending, the basic relationship needs to be integrated twice to get the displacement.  

therefore the function for the displaced shape is two orders higher than that for the 

bending moment e.g. from Table 3 with UD load, the bending moment is parabolic 

whereas the displacement is quartic (fourth order). 
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For shear, the basic relationship needs to be integrated once to get the displacement and 

therefore, for example, with a point load, the shear is constant and the displacement is 

linear. 

   

 

Table 4  Diagram shapes 
 Shear Bending 

Loading Shear force Displacement Bending 
Mom 

Displacement 

Point Constant 

 

linear linear cubic 

UD linear 

 

parabolic parabolic quartic 
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