Guidance for Robot

Loads on sloping members

1. Global Z direction load, not projected

Load definition for a bar element. Global selected means that the load will be applied in the global direction (Z in this case). With the Projected Load box not ticked, the load will be per unit along the length of the member which in this case is 7.74 m Therefore the total load is $10 * 7.74=77.4 \mathrm{kN}$

Node/Case	FX (kN)	FZ (kN)	MY (kNm)
$1 / 1$	0.0	38.70	0.0
211	0.0	38.70	0.0
Case 1	LL1		
Sum of val.	0.0	77.41	0.0
Sum of reac.	0.0	77.41	-193.52
Sum of forc.	0.0	-77.41	193.52
Check val.	0.0	0.0	0.0
Precision	0.0	0.0	

Results for reactions
2. Global Z direction load, projected

With the Projected Load box ticked, the load will be per unit along the length of the Z projection of the member i.e. along a length of 5 m . Therefore the total load is $10 * 5=50 \mathrm{kN}$

Node/Case	FX (kN)	FZ (kN)	MY (kNm)	
$\mathbf{1 /} 1$	-0.00	25.00	0.0	
$\mathbf{2 /} 1$	0.00	25.00	-0.00	
Case 1	LL1		-0.00	
Sum of val.	0.0	50.00	-125.00	
Sum of reac.	0.0	50.00	125.00	
Sum of forc.	0.0	-50.00	0.0	
Check val.	0.0	0.0		
Precision	$6.98492 \mathrm{e}-16$	0.0		

Results for reactions

3. Local Z direction load

With the Local Load box ticked, the load will be in the local Z direction as shown. The reactions are shown in the table.

Node/Case	FX (kN)	FZ (kN)	MY (kNm)
$1 / 1$	-25.00	25.00	0.00
211	-25.00	25.00	-0.00
Case 1	LL1		
Sum of val.	-50.00	50.00	0.0
Sum of reac.	-50.00	50.00	-250.00
Sum of forc.	50.00	-50.00	250.00
Check val.	0.0	0.0	0.0
Precision	$1.74623 \mathrm{e}-16$	0.0	

Results for reactions in global coordinates

Setting the number of significant digits for numbers in a table

Right click on a table and select 'Units and Formats' from the menu. This brings up the dialog box as shown below. The number of significant digits can be increased up to 9 in Robot. In the example below the number of significant digits is set at the maximum of 9 for forces and for moments.
In structural engineering calculations output values seldom are to better than 2 or 3 digit accuracy and should not be quoted to a greater number of digits than is appropriate.
It is only when considering the numerical significance of numbers that more digits should be used. This occurs when doing equilibrium and symmetry checks.
†' Forces:1 - Case: 1 (LL1)

Bar/Node/Case		FX (kN)	FZ (kN)	MY (kNm)
$\mathbf{1} / \mathbf{1} / \mathbf{1}$	0.0	35.355339059	0.000000000	
$\mathbf{1} / \mathbf{2} / \mathbf{1}$	0.0	-35.355339059	0.000000000	

Values $/$ Envelope α Global extremes /Info /

Sign convention for internal force actions in beam elements

Positive directions of forces and moments:

Notes:

1. Compression is positive
2. The positive directions of the My moments gives tension on the underside of a horizontal beam . Threfore when a bending moment diagram is drawn for My moments, they are on the side of the beam that is in tension. This is the normal convention in structural engineering because it shows the side of the beam for tension reinforcement in reinforced concrete.

