University of Strathclyde

Course on Structural Mechanics for students from the University of Ales, July 2015

Example of course test July 2015

Figure 1 shows an analysis model of a truss

Figure 1 Analysis model of truss for a footbridge
All elements are type BEAM with no member end releases.

Vertical loads of -5 kN at nodes $19,23,27$
Vertical load of -2.5 kN at nodes 1 and 14 Node 18 pinned, node 31 horizontal roller

All members RHS $80 \times 40 \times 3$
$A=674 \mathrm{~mm}^{2} \mathrm{I}_{\mathrm{zz}}=180 \mathrm{E} 3 \mathrm{~mm}^{4}$
$\mathrm{E}=209 \mathrm{kN} / \mathrm{mm}^{2}$

Q1. The axial load in the element 14 from the LUSAS model for the loading shown is 11.014 kN tension. Carry out a check on this value and state the reason for the difference between the two values

Q2 The vertical deflection at node 23 for the loading shown is 1.01 mm . Carry out a check on this value using the equivalent beam model (see Information Sheet 1)

Q3 Figure 2 shows the forces on the ends of the elements at node 1. Carry out a check for equilibrium of the force actions at this node.

Q4. Write definitions in English for the following six terms:
(The test paper will state which terms are to be defined. There will be no choice but the terms will be from the following list:

List of possible terms

Force	Deformation	Centre of gravity
Direct force	Displacement	Validation
Shear force	Gravity force	Verification
Moment	Bending moment	Lever arm
Torque	Centroid	Strain
Gravity constant	Resultant force action	Stress

(Note: A 'term' is a 'word or phrase used to describe a thing or to express a concept, esp. in a particular kind of language or branch of study'.)

Figure 2 Element end actions at node 1

Supplementary information - 1

Equivalent beam formulae for calculating the deflection of a diagonally braced frame

$$
K_{s t}=\frac{1}{\frac{1}{f E_{d} A_{d} \sin ^{2} \theta \cos \theta}+\frac{1}{E_{b} A_{b} \cot \theta}} \text { (A1) }
$$

If axial flexibility of the beams can be neglected

$$
\begin{equation*}
K_{s t}=f E_{d} A_{d} \sin ^{2} \theta \cos \theta \tag{A2}
\end{equation*}
$$

Table 1 Beam deflection coefficients

Structure	Load	C_{b} bending	C_{s} shear
Cantilever	Point tip	1/3	1.0
E,I	UD	1/8	1/2
L			
Simply supported	Point central	1/48	1/4
	UD	5/384	1/8

$$
\begin{aligned}
f & =1.0 \text { for singly braced truss } \\
& =2.0 \text { with compressive cross bracing }
\end{aligned}
$$

With tensile only cross bracing, treat as singly braced.
With compressive cross bracing ignore flexibility of posts.

Solutions

Axial forces in a truss

1. Diagonal with highest axial load - Element 14 - $F_{x, 14}$

Resolve vertically in end panel
Vertical component of $F_{x, 14}=$ shear force in panel
$S=$ shear force in the panel $=7.5 \mathrm{kN}$
$F_{x, 14} \sin \theta=S, \quad F_{x, 14}=7.5 / \sin (.625)=12.0 \mathrm{kN}$ tension
From LUSAS model $-F_{x, 14}=11.914 \mathrm{kN}$
Where S is the shear in the truss
$\left(\sin \theta=1.2 / \operatorname{sqrt}\left(1.2^{\wedge} 2+1.5^{\wedge} 2\right)=0.625\right)$
The difference between the two values is due to the shear in the members of the truss in the external panel.

2. Highest axial load in chords - Element 3 - $\mathrm{F}_{\mathrm{x}, 3}$

(This calculation is shown here for information. It is not required in the test.)
Take moments about node 23:
$\mathrm{F}_{\mathrm{x} 3}{ }^{*} \mathrm{D}=7.5 * 3-5 * 1.5=15=\mathrm{M}$ (moment at centre of truss)
$F_{x 3}=M / D=15 / 1.2=12.5 \mathrm{kN}$
From LUSAS model - $\mathrm{F}_{\mathrm{x} 3} 12.5 \mathrm{kN}$

Truss deflection

Equilibrium at node 1

Figure 2 Element end actions at node 1
$\sin \theta=0.625 \cos \theta=0.781$
Horizontal force: 9.334-0.0325-11.914* $0.781+3.3 \mathrm{E}-3 * 0.625=-0.00127$ OK
Vertical force: $\quad 0.0272-7.472+11.914 * 0.625+3.3 \mathrm{E}-3 * 0.781=0.0041$ OK
Moment: 19.578-18.718-0.861 = 0.001 OK (This calculation should be done in the test)

