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1 Newton’s Laws of Motion 
 

We all understand the effect of forces;  all physical objects are continuously subject to 

the action of forces But the physics of force tends not to be clearly explained in 

textbooks. 

The normal starting point is Newton’s Laws of Motion.  A   direct 

translation of these from the Latin of Newton’s Principia is
1
: 

1. Every body perseveres in its state of being at rest or of 

moving uniformly straight forward, except insofar as it is 

compelled to change its state by force impressed. 

2. The rate of change of momentum of a body is proportional to 

the resultant force acting on the body and in the same 

direction. 

3. All forces occur in pairs and these two forces are equal in 

magnitude and opposite in direction. 

 

Law 1 states that a force is needed to change the motion of a body. 

Law 2 states a proportional relationship between a force and the rate of change of 

momentum. 

Law 3 can be interpreted as a statement of the principle of equilibrium. 

 

Laws 1 and 2 relate to bodies in motion and address only one type of force i.e. that 

due to change in momentum.   There are several other types of force as discussed in 

Section  ?? 

 

 

2 Equilibrium 

 
2.1   Basics 

Equilibrium is one of the most important principle in structural mechanics so when 

we talk about it, it is important to know what is meant.  Unfortunately the use of the 

term ‘equilibrium’ is by no means precise. 

A mathematical statement of Newton’s Second Law of Motion is that for any body:   

              d(MV)/dt  =  ΣFi             (1) 

where M is the mass of the body, V is the velocity  and ΣFi  is the sum of the forces on 

the body.  V and Fi are vectors which act along a common line.  MV is the momentum 

of the body.   

 Assuming the mass to be constant, Equation (1) is more commonly written as: 

                    MdV/dt  =    Ma   =   ΣFi            (2) 

where  a = dV/dt  is the acceleration of the body,  

The physicists’ approach is to say that the equilibrium condition is when there is no 

change in momentum such that from Equation (1) :   

   ΣFi  =   0.0 (3) 

Equation (3) is a statement of static equilibrium. 

Equation (2) suggests that Ma is not a force.  Physicists treat it as a ‘fictitious force’ 

(apparently this distinction is important when taking account of relativity).   However 

the engineers’ approach is to treat Ma  as an inertia force and write expression (2) as:   

 Isaac Newton 
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           ΣFr    =  ΣFa                   (4) 

where Fr is a restraining force pulling back on the body and Fa  is an active force  

which pushes it forwards.   The inertia force is a restraining force 

For example the commonly used equation for the dynamic motion of a system 

consisting of a mass M restrained by a spring of stiffness K and also restrained by a 

viscous damper (i.e. with damping proportional to velocity) with damping constant C 

(Figure 1) is written as: 

   Md
2
u/dx

2
 + C du/dx + Ku  =  P(t)   (5) 

where u is the displacement in the x direction,  du/dx is the velocity in the x direction,  

d
2
u/dx

2
 is the acceleration in the x direction and P(t) is a ‘forcing function’ which is a 

time dependent active load on the mass.  Typical forcing functions could be due to out 

of balance machinery forces. blast loading, etc.  

 

 

u 

P(t) 

x,u 

 

 

Spring 

Stiffness - K 

Viscous damper - C 

Mass - M 

Figure 1 Mass and spring with viscous damping 
 

Equation (5) is an example of Equation (4) and engineers call it an equilibrium 

equation.  Physicists say this is wrong  -  the condition of equilibrium is when there is 

no acceleration i.e. is characterised by Equation (3).  

As far as use is concerned Equations (2) and (4) are equivalent.  In (2) all the terms 

except Ma are collected on one side as  ΣFi  and in (4) all the restraining terms are on 

one side of the equation and the forcing terms are on the other. 

So the nub of the problem of how to define ‘equilibrium’ lies in the distinction 

between Equations (2) and (4).   In non-technical contexts use of ‘equilibrium’ is 

towards Equation (2).  If one falls over and starts to accelerate towards the ground one 

says that one has ‘lost equilibrium’.    

 
2.2   Force as a vector 

Force is a vector quantity which can be resolved into several equivalent forces as 

discussed in Section??  Instead of using Equation (4) where the forces are separated 

into resisting and exciting components, it is also common to write the equation of 

equilibrium as    

                    0.0 iF  (6) 

  i.e. as the vector sum of all the forces acting on the body.   For example, using this 

approach Equation (5) would be written as:    P(t) +  Md
2
u/dx

2
 + C du/dx + Ku    =  0.0 

and the values used for the restraining forces would be negative. 

 

 

Validation for the equilibrium condition.  
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Using equation (4), equilibrium is a universal condition which holds in all situations.  

Even when you are out of balance Equation (4) is valid to a high degree of accuracy 

for velocities that are not close to the speed of light.  Its validity depends on (a) 

whether all the relevant types of force have been included and (b) whether these terms 

have been accurately modelled  For example, in modelling a real system using  

Equation (5): 

 there will be friction forces which are not included in the equation  

 there will be some degree of error in the measurement of mass, stiffness, damping 

coefficient and forcing function.   

 

 

3 Types of force 
 
3.1  Momentum force 

The term momentum force  is used here to denote the force needed to change the 

motion of a body according to Newton’s second Law i.e. 

i.e.  
dt

MVd
Fmomentum

)(
       (7) 

 
3.2   Inertia force 

An  inertia force Fi occurs when a body of constant mass is accelerated i.e. when 

Equation (2) is relevant i.e.   

      Fin    =    M dV/dt  =    Ma   (8) 

The inertia force is the property of mass which tends to resist any change in its 

motion.  It is therefore a resistance force. 

  
3.3    Rocket thrust 

A force due to rocket thrust occurs when mass (in the form of gas) is ejected from a 

rocket.  Using Equation (2) and assuming that the velocity of the ejected gas is 

constant - Vg: 

                Ft  =  Vg dMg/dt (9) 

 where:  dMg/dt   is the rate of flow of the mass of the gas at the rocket nozzle.  This 

force acts on the rocket and is therefore an excitation force. 

 

Example 

Figure 2 shows a rocket in space.  

Firing of the rocket ejects gas at high 

velocity  relative to the rocket 

causing the rocket velocity Vr to 

increase. 

The rocket has mass Mr and the mass 

flow of the gas is dMg/dt = m  kg/sec 

 

 

Acting on the rocket is a rocket 

thrust (Equation 9):  

         Ft = Vg dMg/dt  =  Vg m   (10) 
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This is resisted by an inertia force:           

         Fin =   Mr dVr/dt  =   Mr ar  (11) 

where ar is the forward acceleration of the rocket.   

The equilibrium equation based on (4) is therefore: 

         Fin  =  Ft    i.e.  Mrar =  Vg m               (12) 

Validation 

There are no drag forces to resist propulsion in space but the effect of loss of mass on 

the inertia force is neglected for Equation (10). 

 

3.4  Spring  force 

Figure 3(a) shows a strut which is jacked against the side walls of an excavation. The 

jack force causes an axial force in the strut and a reaction at the walls .  In this 

situation the value of the force is independent of acceleration or mass.  

When a force is applied to a body there is always deformation.   As the jack load is 

applied, the walls move apart and the length of the strut decreases.  Strain energy  is 

stored in the strut, in the jack and in the supports.  The forces involved are static 

spring forces derived from strain energy. 

 

       

Force from strut 
on wall 

Jack 

Reaction 

(a) Foundation with walls jacked apart 

 

Fsp

r 

(b)  Spring force 

Figure 3   Spring forces 

Strut taking 
 axial force 

Spring - stiffness K 

 
A relationship for a linear spring force (Figure 3(b))   -  Fsp is:  

Fsp  =  K       (13) 

where K is the spring stiffness and  is the movement of the spring. 

 
3.5   Gravity force 

Between any two masses there is a force field which can be treated a single attractive 

force - Fgravity  -  acting in a line between the centres of gravity of the masses.    Isaac 

Newton devised the Law of Gravity for this interaction:   

     Fgravity  = (G M1 M2)/D
2
         (14) 

where G is the universal gravitational constant and D is the distance between the 

centres of gravity of the masses  -  Figure 4(a). 

For an object at the surface of the earth of mass Mo, the gravity force will be: 

    Fg    =   (GME Mo)/RE
2
                 (15) 
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where Fg  is the gravity force exerted by the earth on the mass Mo, ME is the mass of 

the earth and RE is the radius of the earth. 

Substituting G = 6.67428 x 10
11

  m
3
/kg/sec

2,  
ME =  5.9736 x 10

24
 kg and  

RE =  6378.135 km (at Equator)  gives: 

     Fg  =  Mo  X 9.806 =  Mo g kg m/sec
2
 (16) 

where g =  9.806 is the gravity constant for a mass at the surface of the earth  (the 

standard value is g = 9.8066 and g = 9.81 is normally used in engineering 

calculations.) 

 

Fgravity 

Mo 

Earth  -  mass ME 

M2 

M1 

D 

(a)  2 Masses distance D apart 

RE 

(b)  Mass 2 at surface of the earth 

Figure 4   Gravity forces 

Centre of 
gravity of mass 

 
g is often referred to as the ‘acceleration due to gravity’ but this refers to the special 

case of an object in free fall at the surface of the earth with no other force actions on it 

(i.e. no frictional drag) -  see section which follows. 

 

Object in free fall 

Figure 5 shows an object with mass M  in free 

fall (no frictional drag) near the surface of the 

earth.  An inertial force  Fin = Ma acts upwards 

and a gravity force Fg = Mg acts downwards.  

The equation of equilibrium is then: 

   Fin   =  Fg   i.e.  Ma  =  Mg             (17) 

hence  a =  g 

This is why g is called the ‘acceleration due to 

gravity’.  It is not a good name because 

Equation (17) is only valid if the mass is 

falling within a vacuum.  It is easier to 

understand gravity force if g is treated as a 

constant that has the same dimensions as acceleration (LT
-2

). 

 

 

Static gravity force 

Figure 6 shows a block of concrete supported 

on the ground.   A gravity force: 

      Fg  =  Mb g                      (18) 

where Mb is the mass of the block and g is the 

gravity constant.    The gravity force acts 

downwards.  This causes the support to 

 

Fg  =  Mg  

Fin  =  M a 

Mass M 

Figure 5  Mass in free fall 

Surface 
 of earth 

 

Fb

g 

Figure 6  Supported Block 

 Fr 

Concrete block  

mass - Mb 
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deform.  A spring force reaction - Fr -  acts upwards due to strain energy in the 

ground.   The equilibrium condition is: 

        Fr  =   Fb (19) 

 

Validation 

Three parameters contribute to the value of g using Equation (15)  G, ME and RE.   Of 

these the radius of the earth RE has the greatest uncertainty.  The earth is not exactly 

round - the radius is greater at the equator than at the poles and, of course, the radius 

depends on altitude (i.e. the height above (or below) sea level.  Table 1 gives 

examples of the effect of some assumptions in the calculation of g. 

Table 1  Error in values of g 
Assumption  Error  relative to 

equator value  (%) 

Use 9.80 rather than 9.81 0.1 

RE at poles (= 6356.75 km) rather than at equator 0.33 

RE  at top of Mount Everest 0.1 

 
3.6   Other types of force 

Other types of force include friction force, damping force, centrifugal force. etc. 

The standard for defining force is its inertial form,  force = mass x acceleration with 

units MLT
-2

.  It would be possible to use a definition based on other force types, for 

example based on the deflection of a standard spring.  Force would then have units of 

Length.   It was common in the UK in the past to use a  pound force unit being the 

gravity force exerted by a mass of one pound at the surface of the earth.   Using this 

definition force has the units of mass.    

 

4 Force Units 
The standard for defining force is its inertial form,  force = mass x acceleration with 

units - MLT
-2

.    The standard unit is the Newton which is the force required to cause 

a mass of 1 kg to accelerate by 1.0 m/sec
2
.  The SI symbol for Newtons is ‘N’. 

The standard for defining force could be universal gravity i.e. a unit of force -  a ‘U’ -

would be the gravity force exerted between two masses each of 1.0 kg at a distance 

apart of 1.0 m.  The Universal Gravity relationship would be: 

       Fgravity  = (M1 M2)/D
2
 

i.e. a gravitational constant would not be needed and the units of force would be 

M
2
/L

2
. 

.  

 
 

 

 

M1 = 1.0 kg M2 = 1.0 kg 

D = 1.0 m 

Force = 1.0U 
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5 Free body diagrams and internal force actions 

 
5.1    Definitions 

A free body  is a system or part of a system which is considered to be ‘cut’ (or 

separated) from its surroundings.  At the cuts, force actions are applied to represent 

those which are present in the system.  A free body diagram is a diagram which 

shows all the force actions on a free body. 

The principle of equilibrium applies to a body and to any part of the body.  Therefore 

the principle can be applied to a free body.   The use of free body diagrams for 

considering equilibrium is a fundamental strategy in the use of structural mechanics. 

Structures are considered to have applied loads (external actions) and internal 

actions.  Typical applied loads are:  gravity forces, force due to wind, force due to 

explosions (blast loading), etc.  Internal force actions are the resultants of stresses 

within the system.  They are identified when free body diagrams are created. 

However the distinction between applied and internal force actions is not precise.   

The loads applied to a free body may be due to internal actions from the surrounding 

structure as discussed in Section    It is best to think of internal force actions as a pair 

of equal and opposite action at a cut to create a free body  -  see Section 5.2 

 
5.2   Example of free body diagrams 

Figure 7(a) shows a person standing on bathroom scales.  Figure 7(b) shows a model 

of the situation where the scales are represented as a spring the lower end of which is 

restrained from moving vertically.  The person has mass 70 kg and therefore imposes 

a downward applied load of Fg   =  Mg  =  70 x 9.81 =  687 N  (Equation 16). 

 

 Fsp  -  Weight 

of person 
 687 N 

Reaction from 
floor 687 N 

Rsp -   

Reaction from 
spring   687 N 

Gravity force 
687 N 

Mass of person  
70 kg 

(a) Person on 
scales 

(b)  Model of 
system 

(c) Free body 
diagram of person 

(d) Free body 
diagram of spring 

Spring to 
represent 
the scales 

Figure  7    Free body diagrams for person on scales 

Rsp 

Fsp 

(e) internal actions 
at top of spring 

 Figure 7(c) is a free body diagram of the person.  A gravity force of 687 N which 

represents the weight of the person acts downwards and for equilibrium there is an  

upward reaction Rsp  from the spring.   

Figure 7(d) shows a free body diagram for the spring.  The load from the person acts 

downwards  on the top of the spring and there is an upward reaction from the floor at 

the base of the spring.   
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Figure 7(e) shows the internal force actions between the top of the spring and the feet 

of the person.  A pair of equal and opposite vertical forces acts.  The upward value - 

Rsp - is the action of the spring on the feet of the person and may be considered to be 

an applied load when analysing the effect of forces on the person (e.g. when using the 

free body diagram of Figure 7(c)) .  

The downward value - Fsp  - is the action of the feet of the person on the spring and 

may be considered to be an applied load when analysing the spring on its own (e.g. 

when using the free body diagram of Figure 7(d)) .  

Thus whether a force action is considered to be external or internal depends on the 

context.   
 

 

 

 

 

 
5.3    Process for creating a free body diagram 

The following actions should be taken: 

1. Extract a 'free body' part of the structure for which equilibrium is to be applied. 

2. At the 'cuts' which were made to create the free body apply force actions which 

exist there in the real system  

3. Draw the free body diagram which shows the applied loading and the force 

actions at the cuts i.e. all the force actions which act on the body. 

 

 

6 Applying the principle of equilibrium along a line 
  

Collinear forces act along a common line.   

Figure  8 shows a body with three collinear 

forces acting on it.   

Two approaches to writing the equilibrium 

equation for such a situation are: 

1. Set the vector sum of the forces to zero  .  

For the set of forces of Figure 8  the condition of equilibrium is: 

     Fd  +  Fe  +  Ff  =  0.0    (20) 

i.e.   10.0  +  -2.0 +  - 8.0  =  0.0         

If the line is considered to be in the x direction then the general statement of 

the equilibrium condition along the line is: 

    Fxi  =  0.0          (21) 

Where Fxi  is a force in the x direction 

 

2. Sum of forces in one direction =  Sum of forces in opposite direction.   For the 

forces on the body of Figure 8 this would result in the expression: 

         Fd  +  Ff  =   Fe (22) 

             i.e.      10.0  =   2.0  +  8.0      

7 Forces in a plane 
 

 

x 

Ff  = -8.0 Fd = 10.0 

Fe = -2.0 

Figure 8   Forces along  a line 
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7.1    Resolution of forces 

Figure 

 y 

x 

V 

Vx 

Vy 

 

 

F 

Fx 

Fy 

 

 

(a) Vector components (b) Resolution of forces 

Figure 9  Transformation of vectors  
 

Figure 9(a) shows a vector V with components Vx and Vy in the x and y directions 

respectively.  The co-ordinate axes are cartesian  (i.e at right angles to each other) and 

the relationships between V and its components is: 

Vx  =  V cos    and Vy  =  V cos (23) 

cos and cos are the direction cosines of V with respect to the x and y axes. 

Figure 9(b) shows a force F with components in the x and y directions.  The 

relationships between F and its components are:   

    Fx  =  F cos      and   Fy  =  F cos  

or in matrix notation: 

         F
F

F

y

x






















cos

cos
 (24) 

That forces can be represented by components in the same way as a vector is a matter 

of observation. The transformation of Equations (24) is known as resolution of forces. 

The use of Equations (24) is a main strategy for defining equilibrium conditions in 

two dimensions.   Since cos(90 -  )  =  sin  instead of using cos  it is common to 

use sin , i.e. (24) is normally written as: 

    Fx  =  F cos      and   Fy  =  F sin (25) 

A result of treating force as a vector is that if it is not parallel to a co-ordinate axis 

then it can be replaced by components in these directions.  This is used, for example, 

when dealing with diagonally braced trusses. 

 

7.2   Equilibrium of forces in a plane 

Figure 10(a) shows a body with three applied forces: 

 8.0  is in the negative x direction 

 6.0  in the negative y direction  

 10.0 at an angle   = 36.87
o
  to the x axes. (This is the     angle for a 3-4-5 triangle 

such that cos = 0.8 and sin = 0.6)  

 

The process for applying equilibrium to this system is: 
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1. Resolve all forces into the x and y directions using  Equations (24). The  10.0 

force has components (Figure 10(b)): 

             x direction     10.0 cos  =  10.0*0.8  =  8.0 

             y direction      10.0 sin   =  10.0*0.6   =  6.0 

2. Apply the condition of equilibrium to the forces in the x and y directions 

separately 

       i.e.     Fxi  =  0.0   =  -8.0 + 8.0             

           Fyi   =  0.0   =  -6.0 + 6.0  

       

This demonstrates that the equilibrium condition is satisfied for the system of Figure 

10. 

 

8.0   

 y   

 x   
8.0 

10.0   

6.0 6.0 

6.0 

8.0 

 = 36.87
o 

Figure 10    Equilibrium of forces at a point in a plane 

 

(a)  Force system at a point (b) Diagonal force resolved 

  
 
7.3    Resultants and equilibrants 

Figure 11(a) shows a pair of forces represented as vectors Fa and Fb.  Vector theory 

shows that the diagonal of the parallelogram OC (which represents the force F) 

formed as in Figure 11(a) is the equivalent of the two vectors Fa and Fb.  (This is a 

more general case of resolution of forces than that of Figure 9. 

The diagonal force F is the resultant of Fa and Fb. 

The resultant of a set of forces is the single force which has the same effect as the set. 
 

 -F is the eqilibrant of Fa and Fb 

Figure 11  Resultant and equilibrant 

 F is the resultant of Fa and Fb 

D 
(b)  Equilibrant   

-F 

A 
C 

B 
O 

 
F 

Fb 

Fa A 
C 

B 
O Fa 

Fb 

(b)  Parallelogram of forces showing resultant  

 
Figure 11(b) is the same diagram as 11(a) but with the line OD drawn to the same 

length but in the opposite direction from OC. (OD looks longer than OC but this is an 

optical illusion).  The line OD representing the force -F in scale and direction, 

represents the equilibrant of Fa and  Fb. 

The equilibrant of a set of forces is the single force which balances the set.  It is has 

the same magnitude and acts along the same line as the resultant but in the opposite 

direction. 
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8 Equilibrium in 3 dimensions 
 
8.1   Resolution of forces in 3 dimensions 

The component of a force F resolved into Cartesian axes is given by  Fcos  where ''’ 

is the angle between the direction of the force and the direction of the axis.  

This holds in three dimensions  (Figure 12)): 

            F

F

F

F

z

y

x

z

y

x








































cos

cos

cos

  (26)   

 

cosi is the direction cosine of Fi for resolution of a force in 3 dimensions.  x, for 

example,  is the true angle angle between the line of F and the x axis.  

 

Calculating the  angles 

The  angles can be calculated as follows  (Figure 12): 

Establish a point A which is distance L from the origin of 

the coordinates - O.  The distance OA should represent 

the force F in magnitude and direction.  From A draw a 

line perpendicular to the xz plane to intersect this plane 

at B.  From B draw lines parallel to the x and z axes to 

intersect these axes at points D and C respectively. 

 

The direction cosines are then given by: 

cosx  =  OC/L 

cosz  =  OD/L/L 

cosy  =  BA/L 

where L
2 

 =  OC2 + OD2 + BA2 

 

The projection from A  can alternatively be made to 

planes xy or yz. 

 

 
8.2   Applying equilibrium in 3 dimensions 

The process for applying equilibrium in 3 dimensions at point in space is the same as 

for 2 dimensions but with an extra axis: 

1. Resolve all forces which are not parallel to a coordinate axis into the coordinate 

axes using (26). 

2. Apply the condition of equilibrium (Equation 21) in the 3 coordinate directions 

separately. 

 

 

 

9 Moments 
  

 

O 

 x 

 y 

 z 

A 

B 

D 

C 

 L 

F 

Figure 12  Calculation of 
direction cosines  
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9.1   Definitions 

The term force  normally denotes a direct force which acts along a line. The forces 

considered in Sections 1 to 8 are direct forces. 

A moment  is a turning effect caused by a direct force acting about an axis.   

              

 La 

F 

 Position 
 of axis 

(a)  Lever arm La 

F 

F 

La 

(b)  Couple 

Figure 13  Definition of a moment 

Line of action of force F 

 
 

The value of a moment is:   

       M  =  F La       (27) 

where: 

 F is a direct force 

 La is  the lever arm  -  the perpendicular distance from the axis about which the 

moment is to be calculated to the line of action of the force  - Figure 13(a)   

A couple  is a pair of equal and opposite forces acting over a lever arm distance  La -

Figure 13(b).  The value of the moment -  M - is the same in both cases as defined by 

Equation (27). 

Note that there is no resultant direct force with the couple.  If a pure moment is 

applied to a body it must be in the form of a couple. 

A moment has dimensions typically Newton metres - N m. 

A force action is either a direct force or a moment.  The term 'force actions' denotes a 

set of direct forces and/or moments. 

 
9.2     Calculating the lever arm for a moment 

A process to calculate the lever arm for a force in a plane about an axis which is at 

right angle to the plane is: 

1. In the plane, draw a line which represents the vector of force.  Extend it as far as is 

necessary for Step 3  -  Figure 13(a)  

2. Identify the point on the plane to represent the axis about which the moment is to 

be calculated. 

3. From the point draw a line at right angles to the line of action the force 

4. The distance from the point to the line of action is the lever arm 

 
9.3   Force as a line vector 

In general a vector has magnitude, direction and position but for equilibrium 

calculations a force are treated as line vector.  For a line vector the position of the 

force along which it acts is not important to the process.  This is why the line of action 

of the force can be extended to calculate the value of the lever arm  
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Treating force as a line vector also allows forces along a line to be summed for 

equilibrium even if they do not all act at the same point on the line -  see for example 

Figure 8.    
 

9.4   Sign conventions for moments 

Coordinate axes  The standard convention for Cartesian coordinate axes (i.e. axes at 

right angles to each other) is to use the right hand rule.  Hold the thumb and first two 

fingers of the right hand at right angles to each other.  Point the thumb in the direction 

of the x axis, the forefinger in the direction of the y axis.  The middle finger now 

points in the direction of the z axis  -  Figure 14(a) 
 

(b)  Right hand screw rule     
       for moments 

y (forefinger) 

x (thumb) 
z (middle 

finger) 

(a)  Right hand rule for orientation of axes 

Figure 14  Sign Conventions  
 

Moments  The standard convention for moments is the right hand screw rule.  Point 

the thumb of the right hand in the positive direction of an axis with the hand partially 

closed  - 14(b).  The fingers point in the positive direction of moment.  Another way 

to define the same convention is to say that positive moment is clockwise looking 

down the axis in the positive direction. 
 

 
9.5   Moment equilibrium 

Figure 15 shows a see-saw.  If  a child sits 

on one end and an adult on the other then 

the adult end will go down.  To balance 

the system the adult moves towards the 

fulcrum (i.e the support for the see-saw 

about which it rotates) as in Figure 15. 

If the gravity force of the child is 400N 

(corresponding to a weight of about 40 kg) 

and the corresponding force of the adult is 

600 N then the moment  of the child about 

the fulcrum is:   

     M1 = P1 a  =  400*3.0  =  1200 Nm 

where a is the lever arm of P1 about the fulcrum. 

The moment of the adult about the fulcrum is: 

M2 = P2 b  =  600*2.0  =  1200 Nm 

where b is the lever arm for P2 about the fulcrum 

 

For equilibrium, these are equal and opposite.  The see-saw is in balance. 

 

 P1 =  400 N  P2 = 600 N 

b = 2.0 m 

Figure 15  Equilibrium of a see-saw 

a = 3.0 m 

Fulcrum 
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Using the sign convention positive clockwise, the formal condition of moment 

equilibrium about the fulcrum is: 

  M1  +  M2  =  0.0  i.e.   -1200 +1200 =  0.0               

 

The general statement of moment equilibrium is: 

The sum of the moments of all forces about any axis is zero   

i.e.       Mi  =  0.0    (28) 

where  Mi  is the  moment of force i about the axis.  For example Mx is the moment of 

a force about the x axis.  This naming convention is not universal. For example in 

traditional plate bending theory Mx is the moment acting on the x plane
2
. 

 

Note that the condition is valid for any axis of the system being considered but 

applying the condition again to the same system to a second axis which is parallel to 

the first provides no additional information. 

 
9.6    Resolution of moments 

Moments can be resolved into component directions as for direct forces.  Figure 16 

shows the axis of a force F which acts at 

right angles to the plane of the diagram.  

It acts away from the viewer of the 

diagram.  Reference Cartesian axes x y 

are shown with a third axis n in the xy 

plane at an angle   to the x axis.    

F has lever arms: 

 L about the n axis.   

 Lx about the y axis 

 Ly about the x axis 

 

 

 

 

Noting that:   Ly = Lcos  and Lx = Lsin 

and using the right hand screw rule (Section 9.4), the moments of F about the n, x and 

y  axes are: 

 Mn  =   FL about the n axis  

 Mx  =   FLy  =  FLcos    =  Mncos  about the x axis 

 My  =  -FLx  =  -FLsin   =  -Mnsin  about the y axis 

 

Therefore the components of Mn are: 

         FL
M

M

y

x

























sin

cos
             (29) 

The trick in transforming moments to a different set of axes is to draw a diagram like 

Figure 16 showing the moment as a force acting on the end of an arm and work out 

the lengths of the lever arm for moments about the relevant axes. 

 
9.7    Equilibrium for moments which are not defined about the reference axes 

The process for applying equilibrium for moments which are not defined about the 

reference axes is: 

 

Axis of force F 

 y 

 x 

 Lx 

 Ly 

 L 

 n 

Figure 16  Resolution of a moment 
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1. Resolve all moments so that they all defined about the reference axes using 

coordinate axes using Equation (29). 

2. Apply the condition of moment equilibrium (Equation 28) for moments about the 

reference axes separately. 

 

10     Particular forms of the condition for equilibrium 
 
10.1 In-plane actions 

In a plane (e.g the xy plane) there are three independent force actions  -  two direct 

forces Fx and Fy and a moment Mz -  Figure 17(a).        Therefore there are three 

independent conditions of equilibrium for a body in a (xy) plane, i.e.  

     Fxi  =  0.0,          Fyi  =  0.0          Mzi  =  0.0 (30) 

where Fxi is a force in the x direction,  Fyi is a force in the y direction and Mzi is 

moment about the z axis. 

 
10.2 Out of plane actions 

In a plate bending situation there are three independent force actions  - a  direct force  

Fz at right angles to the plane of the plate and two out of plane moments Mz and My  -   

Figure 17(b)    Therefore there are three independent conditions of equilibrium for a 

plate in bending: 

   Fzi  =  0.0,     Mxi  =  0.0,       Myi  =  0.0 (31) 

where Fzi is a force in the z direction,   Mxi  is a moment about the x axis, and Myi is 

moment about the y axis. 

 
10.3 Actions in 3 dimensions 

In three dimensions there are 6 independent force actions  -  three direct forces and 

three moments  -  Figure 17(c).  Therefore there are six independent conditions of 

equilibrium for a body defined in 3 dimensions: 

   Fxi =  0.0,   Fyi =  0.0,     Fzi =  0.0    

   Mxi =  0.0  Myi =  0.0,Mzi =  0.0     

 

 

    (32) 
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Mx 

My 

y 

x 

Mz 

z 

Fy 
Fx 

(a)  Force actions in a plane 

Fz 

My Mx 

(b)  Force actions out of a plane 

Mz 

z 

Fy 
Fx 

(a)  Force actions in a plane 

Mz 

Fz 

Fx 
Fy 

(c)  Force actions in a 3 dimensions 

Figure 17 Force action sets  
 

 

11     Stress 
 
  

11.1 Basic Definitions 

Stress is force intensity   - force/unit area on a surface 

A normal force  -  N  - acts at right angles to the surface on which it is considered to 

act  -  Figure 18(a). 

A shear force  -  N -  acts parallel to the surface on which it is considered to act -

Figure 18(b). 

The corresponding stresses are: 

 Normal stress   (also called direct stress) resulting from normal force  -  often 

denoted by the symbol    -  Figure 18(a).  Direct stress is normal force per unit 

area. 

       i.e.     =  dN/dA           (33) 

where dA is differential area. 

 Shear stress resulting from shear force -   often denoted by the symbol   -  Figure 

18(b).  Shear stress is shear force per unit area. 

       i.e.    =  dS/dA          (34) 

 

Stress is an internal force intensity i.e. one has to consider a ‘cut’ to interpret it.  

Pressure  is another form of force intensity which acts between surfaces which are in 

contact or within a fluid. 



 18 

 

Figure 18    Definitions of normal and shear forces and stresses 

Area dA Normal force N  dN 

(a) Normal force and normal stress 

Area dA 

Shear Force S  
 dS 

(a) Shear force and shear stress 

 
 

 

 

 x N N 

thickness - t 

b 

N  

 nbt/cos  

ntbt/cos 

nt 

 n 

 x 

(a)  Bar in tension 

(b)  Uniform stress on Section a-a 

(c)  Force on Section a-a 

(e)  Stress on Section b-b 

(f)  Forces on Section b-b due n and nt 

 b 

b a 

 a 

xbt cos  

xbtsin 
(d)  Forces on Section b-b due x 

Figure 19  Uniaxial normal stress in a bar 

a 

 a 

b 

b 

 

 

 

  

Nsin  

Ncos 

N 
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11.2 Uniaxial stress 

In this section the distribution of stresses in the state of uniaxial tension is 

demonstrated. 

Figure 19(a) shows a bar of rectangular cross section in uniaxial tension.   

 Axial means that the resultant of the normal force is at the centre of area, and at 

right angles to, the section being considered.  In this situation the standard 

assumption is that  the stress over the area of the bar is assumed to be constant.  

 Tension  means that the resultant force is acting away from  the section.  

 Uniaxial  means that there is no normal force/stress at right angles to the section 

being considered 

 

The bar has width b,  thickness t and has an applied axial load N causing a normal 

stress - x  - at the section a-a  -  Figure 19(b). 

The relationship between the force and the stress assuming the stress to be constant is: 

        x  =  N/bt (35) 

Therefore the force in the bar (Figure 19(c)) is   

      N = xbt  (36) 

At a section - bb - oriented at an angle  to the plane (Figure 19(d)) on which x acts, 

there will be a normal stress n and a shear stress n (Figure 19(e)) with values: 

         n  =   xcos
2
                     (37) 

   n =   xcos sin                               (38) 

 
Figure 20  Variation of direct and shear stress on an inclined cross-section 

 

Figure 20 shows the variation of direct stress and shear stress as a function of the 

angle of the inclined section b-b.  Note that: 

 The normal stress varies from x at  = 0.0 to zero at  = 90
o
 

 The shear stress is zero at  = 0.0 and at   = 90
o
 and has a maximum value of x/2 

at  = 45
o
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Derivation of Equations (37) and (17.38) 

Resolving N into components normal to, and parallel to, the inclined plane gives 

Figure 19(d): 

 Force normal to the inclined plane     -    Ncos   =  xbt cos  (39) 

        Force  parallel to the plane   -     Nsin   =   xbt sin               (40) 

The direct stress on Section b-b is defined as n and the shear stress is nt   -  Figure 

19(e).   

The  area of the inclined plane is  bt/cos    -  (Figure 19(e) 

Therefore the normal stress on the inclined plane is force/area i.e.:    

       n  =    load/area = xbtcos/(bt/cos)  =  xcos
2
 

Similarly:          

         n  =   xbtsin/(bt/cos)    =   xcos sin 
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