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Modern Structural Analysis   -  Introduction to Modelling 

 
Supplementary information 

 
 
Chapter 3   Section 5.10  Equivalent beam model for  parallel chord 
trusses 
 
The cross references in the form ‘n.m’  or ‘n.m.p’ are to sub-sections in Modern 
Structural Analysis  -  Introduction to Modelling. 
The cross references with a single number are to items within this document. 
 
 
Case study   1  -    Checking model for a plane parallel chord truss 
 
Purpose 
The purpose of this study is to investigate: 
• an example of the use of the equivalent beam checking model for a plane parallel 

chord truss -  Section 5.10  
• the behaviour of a truss of this type 
 
 
Truss configuration 
Figure 1   shows a plane truss with parallel chords fabricated from circular hollow 
sections (CHS).  
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Figure 1   In-plane parallel chord truss 

 
 
Element model 
 
Figure  1(b) shows the 2D element  model. 
 
Model  types  Two types of model are considered: 
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• Beam element model   which includes axial, bending (but not shear) deformation.  
Full moment connections at all joints 

• Bar element model   which includes only axial deformation of the members 
 
Element Properties  -  see Table 1  
 
 
Table 1  Element properties 
Member Area (mm2) I value   (mm4) E   (kN/mm2)
Chords 2570 8.56E+08 209
Diagonals 1320 1.16E+06 209
 
The supports are: 
• Node  1  -   restrained in global x and y directions; no rotational restraints 
• Nodes 6  -  restrained in the vertical direction only. 
 
Loading    50 kN vertical checking load at the centre of the span applied at the lower 
chord level. 
 
 
Calculate the central deflection in the line of the applied load  -   ∆  -  using the 
equivalent beam of Section 5.10.4 
 
For a definition of symbols see Section 5.10.4. 
 
The equivalent beam is shown in Figure 2 
 
 

L = 3000

W = 50 kN 

Figure 2   Equivalent beam 

Ig, kst 

 
Section properties for the equivalent truss 
For  Ig use Equation (5.17) 
Ig  =  Acb2  =   2570*300^2/2  =  1.157E8  mm4 

 
For the shear stiffness Kst  use Equation (5.19)  ( there are no posts) 
θ = tan-1(300/500) =  0.5404 
Kst  =  fEdAdsin2θcosθ  =  1.0*1320*209*sin(0.5404)^2*cos(0.5404)  =62617 kN/rad 
 
Central deflection of the equivalent beam 
∆   =   ∆b  +  ∆s        (Equation 5.5) 
     =  WL3/(48EIe)  +  WL/(4Kst)         (From Table A4) 
     =  50*3000^3/(48*209*1.157E8)  +   50*3000/(4*62617) 
     =  1.163  + 0.5989   
     =   1.762  mm 
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Comparison of values of central deflection with element model results 
Table 2 compares the results for central deflection for the equivalent beam model, the 
beam element model and the bar element model. 
 
Table  2   Comparison of ∆ values 

 1 2 3 4 5 
Displacement Equivalent 

beam 
Beam 

element 
model 

%diff 
(1-2)/2*100

Bar 
element 
model 

%diff 
(1-4)/4*100 

∆b  - axial, chords 1.164 0.814 42.88 1.228 -5.26 
∆s - axial, diagonals 0.599 0.382 56.70 0.599 0.01 
∆m  -  bending 0.278   
∆ 1.762 1.475 19.49 1.827 -3.54 
Note:  
• ∆b is the contribution of the axial deformation of the chords to the central 

deflection.  For the equivalent beam this is the central deflection due to bending 
mode deformation. 

• ∆s is the contribution of the axial deformation of the diagonals to the central 
deflection.   For the equivalent beam this is the central deflection due to shear 
mode deformation. 

•  ∆m is the contribution to ∆ from the moments in the beam element model i.e. 
from bending in the elements of the beam element model. 

 
Calculate the contribution of axial and bending deformation in the beam element 
model using the principle of virtual work 
Table 3 shows the calculation of the contributions to ∆ from axial deformation in the 
beam element model. 
 
The columns of Table 3 represent: 
• Na  -  the actual axial forces in the elements from the LUSAS output 
• Nv  -  the virtual forces in the elements due to a unit point load in the direction of 

the required displacement.  In this case the required displacement is in the line of 
the applied load and is therefore the Na column divided by 50.  For displacements 
in an other direction  a separate load case with a unit load in that direction would 
be required to establish the Nv column. 

• A and L are the areas and the lengths of the members respectively. 
 
Table 3   Virtual work calculation of the deformation of the beam element model 
element Na Nv A L NaNvL/(EA) 

     chords diagonals 
1 -38.03 -0.7606 2570 1000 0.0539
2 -98.88 -1.9776 2570 1000 0.3641
3 -38.03 -0.7606 2570 1000 0.0539
4 67.83 1.3566 2570 1000 0.1713
5 67.83 1.3566 2570 1000 0.1713
6 44.14 0.8828 1320 583.10 0.0824
7 -34.64 -0.6928 1320 583.10 0.0507
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8 37.04 0.7408 1320 583.10 0.0580
9 37.04 0.7408 1320 583.10 0.0580

10 -34.64 -0.6928 1320 583.10 0.0507
11 44.14 0.8828 1320 583.10 0.0824

  Sum 0.8144 0.3822
 
The sums of the last two columns in the table give the contributions to ∆ of the chord  
and the diagonal elements of the model.  The contribution of bending deformation -   
∆m  =  1.475 - 0.814 -0.382  =  0.278 mm)  is the difference between the total 
deflection and the sum of these two axial components 
 
Calculate the contribution of chords and the diagonals  in the bar element model 
The same process as for the beam element model was repeated for the bar element 
model to calculate the contributions of the axial deformations of the chords and of the 
diagonals to ∆   The results are quoted in Table 3  (calculation not shown here). 
 
Analysis of the results in Table 3  
The following trends are identified: 
• The dominant contribution to ∆ is the axial deformation of the chords.  The 

bending deformation of the elements has the least effect but it is not negligible in 
the beam element model. 

• The equivalent beam model significantly overestimates the central deflection by 
19% as compared with the beam element model results due to the fact that it does 
not take account of the bending of the elements. 

• The equivalent beam model gives very good correlation with the results from the 
bar element model in this case. 

 
 
 
Estimate the values of the axial forces in the members of the frame 
 
See last part of Section 5.10.4 
 
Table 4   Axial forces in the plane truss 

 1 2 3 4 5 
Axial  force Equivalent 

beam 
Beam 

element 
model 

%diff 
(1-2)/2*100

Bar 
element 
model 

%diff 
(1-4)/4*100 

Nc    Top chord 125.0 98.87 26.4 125.0 0.0 
Nc    Bottom chord 125.0 67.83 84.3 83.33 50.01 
Nd   End diagonal 48.59 41.76 16.4 48.59 0.0 
 
 
 
 
Chord members  For the equivalent beam model the axial forces in the chords are 
calculated using: 
    Nc  =   M/b   
where:  
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• Nc is the axial force in a chord member at the position where M is calculated 
• M   is the (central) bending moment in the equivalent beam. 
• b   is the distance between the chord members 
 
For the axial force at the centre of the span 
Nc  =   M/b  =  WL/4/b  =  50*3000/4/300  =125.0 kN 
Table 4  compares this result with the values from the beam and bar element models. 
 
 
End diagonal members 
The axial force in the end diagonal is estimated by resolving the forces at the support -  
Figure 9.   
Vertical equilibrium gives  25.0 = Nd sin(θ)  hence Nd =  25.0/sin(0.5404) = 48.59 kN 
 
 

25.0  θ 

Nd 

Figure 3  Forces at support 
 

 
This result is also included in Table 3. 
 
Analysis of the results of Table 3  
The following trends are identified: 
• The top chord axial force from the equivalent beam (125.0) correlates precisely 

with that from the bar element model but the bottom cord axial forces are lower 
because of the diagonals that connect to it at the loaded node.   

• The top chord value for the beam element model is significantly less due to the 
bending stiffness of the elements. 

• The end diagonal forces from the equivalent beam and the bar element model 
precisely correlate.  The effect of element bending on the end diagonal axial force 
is less pronounced. 

 
General conclusions 
The results of this case study indicate the type of correlation that can be achieved in 
using the equivalent beam model.  It is recommended that these results are not 
extrapolated to other truss configurations without cross checking against element 
model results.   
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Case study 2  -    Checking model for a  parallel chord truss with a 
triangular cross section 
 
The purpose of this study is to investigate an example of the use of the equivalent 
beam checking model for a 3D parallel chord truss. 
 
 
Truss configuration 
Figure 4  shows a 3D truss with parallel chords fabricated from circular hollow 
sections (CHS).  The configuration is similar to the plane truss of Case study 1  but 
there are two top chord members forming a triangular cross section for the system.   
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Figure 4  3D Truss 

For plan showing 
diagonals and 
lower chords see 
Figure  

 
Element models 
Figure  5  shows the 3D element  model.   
Beam and bar element models were used as for the truss of Case Study 1   
 
The element properties are the same as for the truss of Case Study 1  (Table 1) 
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Figure 5  Analysis model for 3D truss    
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The supports are: 
• Nodes 1 and 8 -   restrained in global x,y and z direction; no rotational restraints 
• Nodes 6 and 13 -  restrained in the vertical direction only. 
 
Loading    50 kN vertical checking load at the centre of the span applied at the lower 
chord level 
 
 
Calculate the central deflection in the line of the applied load - ∆  -  using the 
equivalent beam of Section 5.10.4 
 
For a definition of symbols see Section 5.10.4  . 
 
 

600  Ac = 2570 mm2 
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Figure 6  Cross section of equivalent beam  
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Equivalent I value   Ig 
Figure 6 shows the cross section for the equivalent beam .   The three chord member 
areas form a 'section' for which the second moment of area is calculated by 
identifying the position of the centroidal axis of the section and taking second 
moments of area of the chord members about this axis. 
 
Position of centroidal axis.  Take moments of area about the lower chord member: 
  3Acy  =  2Ac300  i.e. y  =  2*300/3  =  200 mm 
where:  
• Ac  is the area of a chord member 
• y is the distance from the lower chord to centroidal axis 
 
The second moment of are is therefore: 
  Ig  =  Ac 2002 +  2 Ac1002  =  2570*200^2 + 2*2570*100^2  =  1.542E8  mm4 
 
Shear stiffness -  Kst     
To calculate the vertical shear stiffness of the truss, the shear stiffness in the inclined 
plane of the diagonals  (i.e. the planar stiffness) is calculated and the vertical 
component of this is calculated (by a cos2(φ) transformation - see table A5) and then 
doubled to account for the two inclined planes. 
 
The inclined planar trusses are oriented at an angle φ  to the vertical - Figure 6.   
 
The angle φ  =  tan-1(300/300)  =  0.7854 radians 
 
Depth of  a planar truss -  bp =  sqrt(300^2 + 300^2)  =  424.3 mm 
The θ angle for a planar truss (Figure 7) -  θp =  tan-1(424.26/500)  =  0.7036 radians 
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θp 

Figure 7   Angle θp 

424.26 

 
 
The shear stiffness for a planar truss Kst,p is calculated using Equation (5.19): 
    Kst,p   = fEdAdsin2θpcosθp  =  1.0*209*1320*sin(0.70360)^2*cos(0.7036)   
              =  88051 kN/rad 
 
The vertical component of the shear stiffness for the system is: 
    Kst =  2 Kst,p cos2(φ)  =  2*88051*cos(0.7854)^2 =88051 kN/rad 
 
Value of ∆ 
 ∆   =   ∆b  +  ∆s    (Equation (5.5)) 
     =  WL3/(48EIe)  +  WL /(4 Kst)      Table A4 
     =  50*3000^3/(48*209*1.5428E8)  +   50*3000/(4*88051) 
     =  0.872  + 0.426 
     =   1.298  mm 
 
In Table 5  this value is compared with the corresponding results from the beam 
element and the bar element models 
 
 
Table 5  Comparison of ∆ values 

1 2 3 4 5  
Parameter Equivalent 

beam 
Beam 

element 
model 

%diff 
(1-2)/2*100 

Bar 
element 
model 

%diff 
(1-4)/2*100 

Deflection ∆ 1.298 1.019 27.38 1.231 5.4
Nc    Top chord 62.5 46.2 35.28 49.10 27.3
Nc   Bottom chord 125 65.06 92.13 83.33 50.01

 
Axial force 

Nd   End diagonal 27.32 24.3 12.43 27.32 0.0
 
49.10 
Analysis of the results for deflection in Table 5 
The equivalent beam gives good correlation against the bar element model results but 
is less accurate with the beam element model where bending deformation is not 
negligible.   
 
 
 
Estimate the values of the axial forces in the members of the frame  
 
Chord members     
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Treating the section of Figure 6 as that of a beam, the axial stress in the bottom chord 
member - σcb - is: 
     σcb = My/Ie   =  M*200/Ig 
     M =  WL/4  =  50*3000/4  = 37500 kN mm 
hence σcb = 37500*200/1.542E8   =  0.04864 kN/mm2 

 
The axial force in the bottom chord is therefore: 
   Ncb  =    σcbAc  =  0.04864*2570 = 125.0 kN 
 
The axial force a top chord member is: 
Nct  =  σct Ac  =  MyAcIe  =  37500*100/1.542E8*2570 =  62.50 kN 
where σct  is the axial stress in the top chord member 
 
End diagonal member    Vertical equilibrium at a support node: 
    R   =  Ndcosλ 
where: 
• R is the reaction at the support  = 12.5 kN 
• Nd is the axial force in the diagonal member 
• λ is the angle between the axis of the diagonal member at the support (e.g element 

14 in Figure 5)  and the vertical axis -  See Figure 8 
 

cosλ  =  
member diagonal  theoflength  true

axis  verticalon themember  diagonal of projection    

 
Length of diagonal member  =  sqrt(300^2 + 300^2 + 500^2)  =655.74 mm 
cosλ   =  300/655.74  =  0.4575 
hence Nd =  R /cosλ  =  12.5/0.4575  =  27.32 kN 
 
The results for the three models are given in Table 5  
  
 

 655.74 300 
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300 λ

 A

(a)  Plan of model showing the diagonal elements Element 14 

Figure 8  Definition of angle λ 

(b) View on A 

Element 14 

 
 
Analysis of the results for axial forces  in Table 5 
The equivalent beam significantly overestimates the axial forces as compared with the 
beam element model.  This is mainly due to the effect of element bending. 
The correlation between the equivalent beam results and the bar element model results 
is good apart from that for the bottom chord.  This is due to the effect of the diagonals 
meeting at the bottom central node. 
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A correlation with the bar element model for the bottom chord axial force is achieved 
by taking moments about the axis at 'a' on the free-body diagram of Figure 9. (a)   
  Applying the condition of equilibrium gives: 
    25.0*100 =  nb*300       hence  nb =  25.0*1000/3000  =  83.33 
This is the same as the value from the bar element model 
 
 


